MySQL的索引是什么?怎么优化?

      索引类似大学图书馆建书目索引,可以提高数据检索的效率,降低数据库的IO成本。MySQL在300万条记录左右性能开始逐渐下降,虽然官方文档说500~800w记录,所以大数据量建立索引是非常有必要的。MySQL提供了Explain,用于显示SQL执行的详细信息,可以进行索引的优化。

一、导致SQL执行慢的原因:

      1.硬件问题。如网络速度慢,内存不足,I/O吞吐量小,磁盘空间满了等。

      2.没有索引或者索引失效。(一般在互联网公司,DBA会在半夜把表锁了,重新建立一遍索引,因为当你删除某个数据的时候,索引的树结构就不完整了。所以互联网公司的数据做的是假删除.一是为了做数据分析,二是为了不破坏索引 )

      3.数据过多(分库分表)

      4.服务器调优及各个参数设置(调整my.cnf)

二、分析原因时,一定要找切入点:

      1.先观察,开启慢查询日志,设置相应的阈值(比如超过3秒就是慢SQL),在生产环境跑上个一天过后,看看哪些SQL比较慢。

      2.Explain和慢SQL分析。比如SQL语句写的烂,索引没有或失效,关联查询太多(有时候是设计缺陷或者不得以的需求)等等。

      3.Show Profile是比Explain更近一步的执行细节,可以查询到执行每一个SQL都干了什么事,这些事分别花了多少秒。

      4.找DBA或者运维对MySQL进行服务器的参数调优。

三、什么是索引?

      MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。我们可以简单理解为:快速查找排好序的一种数据结构。Mysql索引主要有两种结构:B+Tree索引和Hash索引。我们平常所说的索引,如果没有特别指明,一般都是指B树结构组织的索引(B+Tree索引)。索引如图所示:

             

      最外层浅蓝色磁盘块1里有数据17、35(深蓝色)和指针P1、P2、P3(黄色)。P1指针表示小于17的磁盘块,P2是在17-35之间,P3指向大于35的磁盘块。真实数据存在于子叶节点也就是最底下的一层3、5、9、10、13……非叶子节点不存储真实的数据,只存储指引搜索方向的数据项,如17、35。

      查找过程:例如搜索28数据项,首先加载磁盘块1到内存中,发生一次I/O,用二分查找确定在P2指针。接着发现28在26和30之间,通过P2指针的地址加载磁盘块3到内存,发生第二次I/O。用同样的方式找到磁盘块8,发生第三次I/O。

      真实的情况是,上面3层的B+Tree可以表示上百万的数据,上百万的数据只发生了三次I/O而不是上百万次I/O,时间提升是巨大的。

四、Explain分析

      前文铺垫完成,进入实操部分,先来插入测试需要的数据:

CREATE TABLE `user_info` (
`id`   BIGINT(20)  NOT NULL AUTO_INCREMENT,
`name` VARCHAR(50) NOT NULL DEFAULT '',
`age`  INT(11)              DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `name_index` (`name`)
)ENGINE = InnoDB DEFAULT CHARSET = utf8;
INSERT INTO user_info (name, age) VALUES ('xys', 20);
INSERT INTO user_info (name, age) VALUES ('a', 21);
INSERT INTO user_info (name, age) VALUES ('b', 23);
INSERT INTO user_info (name, age) VALUES ('c', 50);
INSERT INTO user_info (name, age) VALUES ('d', 15);
INSERT INTO user_info (name, age) VALUES ('e', 20);
INSERT INTO user_info (name, age) VALUES ('f', 21);
INSERT INTO user_info (name, age) VALUES ('g', 23);
INSERT INTO user_info (name, age) VALUES ('h', 50);
INSERT INTO user_info (name, age) VALUES ('i', 15);
CREATE TABLE `order_info` (
`id`           BIGINT(20)  NOT NULL AUTO_INCREMENT,
`user_id`      BIGINT(20)           DEFAULT NULL,
`product_name` VARCHAR(50) NOT NULL DEFAULT '',
`productor`    VARCHAR(30)          DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)
)ENGINE = InnoDB DEFAULT CHARSET = utf8;
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p2', 'WL');
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p1', 'DX');
INSERT INTO order_info (user_id, product_name, productor) VALUES (2, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (2, 'p5', 'WL');
INSERT INTO order_info (user_id, product_name, productor) VALUES (3, 'p3', 'MA');
INSERT INTO order_info (user_id, product_name, productor) VALUES (4, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (6, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (9, 'p8', 'TE');

初体验,执行Explain的效果:

索引使用情况在possible_keys、key和key_len三列,接下来我们先从左到右依次讲解。

1.id

--id相同,执行顺序由上而下
explain select u.*,o.* from user_info u,order_info o where u.id=o.user_id;

--id不同,值越大越先被执行
explain select * from  user_info  where id=(select user_id from order_info where  product_name ='p8');

2.select_type

可以看id的执行实例,总共有以下几种类型:

  • SIMPLE: 表示此查询不包含 UNION 查询或子查询
  • PRIMARY: 表示此查询是最外层的查询
  • SUBQUERY: 子查询中的第一个 SELECT
  • UNION: 表示此查询是 UNION 的第二或随后的查询
  • DEPENDENT UNION: UNION 中的第二个或后面的查询语句, 取决于外面的查询
  • UNION RESULT, UNION 的结果
  • DEPENDENT SUBQUERY: 子查询中的第一个 SELECT, 取决于外面的查询. 即子查询依赖于外层查询的结果.
  • DERIVED:衍生,表示导出表的SELECT(FROM子句的子查询)

3.table

table表示查询涉及的表或衍生的表:

explain select tt.* from (select u.* from user_info u,order_info o where u.id=o.user_id and u.id=1) tt

id为1的<derived2>的表示id为2的u和o表衍生出来的。

4.type

type 字段比较重要,它提供了判断查询是否高效的重要依据依据。 通过 type 字段,我们判断此次查询是 全表扫描 还是 索引扫描等。


type 常用的取值有:

  • system: 表中只有一条数据. 这个类型是特殊的 const 类型。
  • const: 针对主键或唯一索引的等值查询扫描, 最多只返回一行数据. const 查询速度非常快, 因为它仅仅读取一次即可.例如下面的这个查询, 它使用了主键索引, 因此 type 就是 const 类型的:explain select * from user_info where id = 2;
  • eq_ref: 此类型通常出现在多表的 join 查询, 表示对于前表的每一个结果, 都只能匹配到后表的一行结果. 并且查询的比较操作通常是 =, 查询效率较高. 例如:explain select * from user_info, order_info where user_info.id = order_info.user_id;
  • ref: 此类型通常出现在多表的 join 查询, 针对于非唯一或非主键索引, 或者是使用了 最左前缀 规则索引的查询. 例如下面这个例子中, 就使用到了 ref 类型的查询:explain select * from user_info, order_info where user_info.id = order_info.user_id AND order_info.user_id = 5
  • range: 表示使用索引范围查询, 通过索引字段范围获取表中部分数据记录. 这个类型通常出现在 =, <>, >, >=, <, <=, IS NULL, <=>, BETWEEN, IN() 操作中.例如下面的例子就是一个范围查询:explain select * from user_info  where id between 2 and 8;
  • index: 表示全索引扫描(full index scan), 和 ALL 类型类似, 只不过 ALL 类型是全表扫描, 而 index 类型则仅仅扫描所有的索引, 而不扫描数据.index 类型通常出现在: 所要查询的数据直接在索引树中就可以获取到, 而不需要扫描数据. 当是这种情况时, Extra 字段 会显示 Using index.
  • ALL: 表示全表扫描, 这个类型的查询是性能最差的查询之一. 通常来说, 我们的查询不应该出现 ALL 类型的查询, 因为这样的查询在数据量大的情况下, 对数据库的性能是巨大的灾难. 如一个查询是 ALL 类型查询, 那么一般来说可以对相应的字段添加索引来避免.

      通常来说, 不同的 type 类型的性能关系如下:
      ALL < index < range ~ index_merge < ref < eq_ref < const < system
      ALL 类型因为是全表扫描, 因此在相同的查询条件下, 它是速度最慢的.而 index 类型的查询虽然不是全表扫描, 但是它扫描了所有的索引, 因此比 ALL 类型的稍快.后面的几种类型都是利用了索引来查询数据, 因此可以过滤部分或大部分数据, 因此查询效率就比较高了.

5.possible_keys

      它表示 mysql 在查询时, 可能使用到的索引. 注意, 即使有些索引在 possible_keys 中出现, 但是并不表示此索引会真正地被 mysql 使用到. mysql 在查询时具体使用了哪些索引, 由 key 字段决定.

6.key

      此字段是 mysql 在当前查询时所真正使用到的索引.比如请客吃饭,possible_keys是应到多少人,key是实到多少人.当我们没有建立索引时:

explain select o.* from order_info o where  o.product_name= 'p1' and  o.productor='whh';
create index idx_name_productor on order_info(productor);
drop index idx_name_productor on order_info;

建立复合索引后再查询:

7.key_len

      表示查询优化器使用了索引的字节数. 这个字段可以评估组合索引是否完全被使用.

8.ref

      这个表示显示索引的哪一列被使用了,如果可能的话,是一个常量。前文的type属性里也有ref.注意区别

9.rows

      rows 也是一个重要的字段. mysql 查询优化器根据统计信息, 估算 sql 要查找到结果集需要扫描读取的数据行数.这个值非常直观显示 sql 的效率好坏, 原则上 rows 越少越好.可以对比key中的例子,一个没建立索引钱,rows是9,建立索引后,rows是4.

10.extra

explain 中的很多额外的信息会在 extra 字段显示, 常见的有以下几种内容:

  • using filesort :表示 mysql 需额外的排序操作, 不能通过索引顺序达到排序效果. 一般有 using filesort都建议优化去掉, 因为这样的查询 cpu 资源消耗大.
  • using index:覆盖索引扫描, 表示查询在索引树中就可查找所需数据, 不用扫描表数据文件, 往往说明性能不错
  • using temporary:查询有使用临时表, 一般出现于排序, 分组和多表 join 的情况, 查询效率不高, 建议优化.
  • using where :表名使用了where过滤

五、优化案例

explain select u.*,o.* from user_info u LEFT JOIN  order_info o on u.id=o.user_id;

执行结果,type有ALL,并且没有索引:

开始优化,在关联列创建索引,明显看到type列的ALL变成ref,并且用到了索引,rows也从扫描9行变成了1行:

这里面一般有个规律是:左链接索引加在右表上面,右链接索引加在左表上面。

六、是否需要创建索引?   

      索引虽然能非常高效的提高查询速度,同时却会降低更新表的速度。实际上索引也是一张表,该表保存了主键与索引字段,并指向实体表的记录,所以索引列也是要占用空间的。

              

      我是个普通的程序猿,水平有限,文章难免有错误,欢迎牺牲自己宝贵时间的读者,就本文内容直抒己见,我的目的仅仅是希望对读者有所帮助。

 

Be the first to comment

Leave a Reply

Your email address will not be published.


*